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Comparison of linear and non-linear equations for univariate calibration
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Abstract

Univariate data accumulated for the purpose of calibration of chromatographic and spectroscopic methods often exhibit slight but definite
curvature. In this paper the performance of a non-linear calibration equation with the capacity to account empirically for the curvature,
y = a + bxm, (m �= 1) is compared with the commonly used linear equation,y = a + bx, as well as the quadratic equation,y = a + bx+ cx2.
All equations were applied to high quality HPLC calibration data using unweighted least squares. Parameter estimates and their standard
errors were calculated for each equation. Standard errors and 95% prediction intervals in analyte concentrations were estimated with the aid
of the fitted equations and their respective covariance matrices. Results indicate that the non-linear and quadratic equations each provide a
better fit than the linear equation to the data considered here, as judged by the Akaikes information criterion (AIC), the adjusted coefficient
of multiple determination, the magnitude and scatter of residuals, standard errors in estimated analyte concentrations and lack of fit analysis
of variance (ANOVA). While the difference between the equationsy = a + bx+ cx2 andy = a + bxm as judged by the same criteria is more
marginal, this work suggests that the non-linear calibration equation should be considered when a curve is required to be fitted to low noise
calibration data which exhibit slight curvature.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Calibration is vital to the valid application of all chro-
matographic methods. The most usual method applied by
chromatographers is the least squares method of linear re-
gression. In many situations, the relationship between instru-
ment response (y) and of analyte concentration (x) is close
to linear[1], such that the relationship betweenx andy can
adequately be described by the equation,

y = a + bx. (1)

a andb are ‘best estimates’ of the true intercept and slope
respectively of a straight line through the data.

Often, a and b are determined using unweighted least
squares in which the sum of squares of residuals (SSR)
is minimised[2]. In many circumstances in which a best
straight line is required to be drawn through calibration data,
the coefficient of determination,R2, is in excess of 0.999,
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even when the data show signs of curvature[3]. Other equa-
tions may be fitted to the data, but it is important to be able
to establish whether the fit is indeed better, as a reduction
in SSR is to be expected if an equation to be fitted has more
adjustable parameters thanEq. (1).

Many quantitative applications of analytical chemistry
currently have very stringent requirements regarding the ac-
curacy and precision of results. Reliable estimates of analyte
concentrations and their uncertainties are needed. This is
particularly true for applications that assay potentially toxic
compounds or those coming under regulatory controls. Reg-
ulatory agencies such as the United States Food and Drug
Administration (FDA) and the United States Environmental
Protection Agency (EPA) require methods of chemical anal-
ysis to be fully validated, providing comprehensive method
descriptions together with reliable uncertainty estimates.
However, achieving good quality measurements is often dif-
ficult and this is demonstrated when inconsistent results are
achieved by different laboratories[4]. Quality in analytical
measurements can only be defined in terms of the relative
performance of a method. The result of a measurement
needs to be able to stand the test of comparison with the
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results of other measurements. This can only be achieved
if the analytical result is independent of the method and
the analyst[5]. A vital component of comparability is the
ability to calibrate instrumentation using traceable reference
materials. Much attention has been given to the production
of primary reference materials to enable traceability. Yet
the least squares technique for calibration of instruments to
these reference materials to allow the prediction of sample
concentration has previously been shown to have limitations
[3]. Many analysts depend entirely on the use of a corre-
lation coefficient with a value between 0.999 and 1.000 as
an acceptability criterion when evaluating the least squares
method. This is well known to be inadequate and many
experts have expressed concern that publications are still
accepted with this minimum statistic[6].

An attraction of fittingEq. (1) to data is that much stan-
dard software is available to carry out this task. Neverthe-
less, there are situations in which close inspection reveals
that slight, but definite, curvature exists in the calibration
data suggesting that the fitting ofEq. (1)to the data is inap-
propriate. It is possible to reduce the concentration range in
order to obtain an acceptable linear fit. However, in many
situations it is not possible to anticipate analyte concentra-
tions that may occur. In such situations there is merit in as-
suring that the calibration range is liberally chosen.

In this paper the fitting ofEq. (1) to ‘real’ calibration
data is compared with that of a quadratic equation as well
as a less commonly used non-linear equation. The data were
drawn from HPLC studies on ibuprofen, genisten, pseudo-
ephedrine, biochanin and sodium nitrate. In particular, a fo-
cus is brought to the issue of whether the quadratic and
non-linear calibration equations offer a worthwhile improve-
ment over the linear equation.

2. Theory

The instrument response is assumed affected by errors that
are homoscedastic and normally distributed. The assumption
is also made that the errors in analyte concentration used
for calibration can be neglected. The approach adopted here
can be extended to situations in which heteroscedasticity in
data is prevalent.

2.1. Fit of linear equation to data

For values of analyte concentration,x1, x2, xi,. . . , xn, the
corresponding instrument response is given by,y1, y2, yi,. . . ,
yn, wheren is the number of data pairs. It is assumed that
the relationship betweenx andy is given byEq. (1). Thea
andb, respectively are established by minimising the sum
of squares of residuals, SSR, given by,

SSR=
∑

(yi − ŷi)
2 (2)

where

ŷi = a + bxi (3)

In matrix form,a andb may be expressed as[7].(
a

b

)
= p = (XTX)−1XTY (4)

where

X =




1 x1
1 x2
1 x3
1 xi

...
...

1 xn




, Y =




y1
y2
y3
yi

...

yn




andXT is the transpose ofX.

Standard errors ina andb, written asσa andσb, respec-
tively, may be found from the diagonal of the covariance
matrix, V, given by[8],

V = σ2(XTX)−1 (5)

where

σ2 =
∑

(yi − ŷi)
2

n − 2
(6)

Once fitting has been accomplished, an estimate of analyte
concentration,̂x0, may be determined for a mean instrument
response,̄y0, using:

x̂0 = ȳ0 − a

b
(7)

It is assumed that errors in̄y0 are not correlated with errors
in the parameter estimates. The variance inx̂0, written as
σ2

x̂0
, is therefore given by[9]:

σ2
x̂0

=
(

∂x̂0

∂ȳ0
σȳ0

)2

+ dT
x̂0

Vdx̂0 (8)

where

dx̂0 =




∂x̂0

∂a
∂x̂0

∂b


 (9)

Also,

∂x̂0

∂ȳ0
= 1

b
, (10)

∂x̂0

∂a
= −1

b
, (11)

∂x̂0

∂b
= −

(
ȳ0 − a

b2

)
(12)

2.2. Fit of quadratic calibration equation to data

In order to account for curvature in calibration data, it is
possible to fit a quadratic equation to data. In this case the
relationship betweenx andy is assumed to be:

y = a + bx+ cx2 (13)
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Eq. (13)can be fitted to data using linear least squares. The
sum of squares of residuals SSR is given byEq. (2), where

ŷi = a + bxi + cx2
i (14)

In matrix form,a, b andc may be expressed as,
 a

b

c


 = p = (XTX)−1XTX (15)

where

X =




1 x1 x2
1

1 x2 x2
2

1 x3 x2
3

1 xi x2
i

...
...

...

1 xn x2
n




, Y =




y1

y2

y3

yi

...

yn




.

Standard errors ina, b andc, written asσa, σb andσc,
respectively, may be found from the diagonal of the covari-
ance matrix,V, given byEq. (5)where:

σ2 =
∑(

yi − ŷi

)2
n − 3

(16)

Once fitting has been accomplished, an estimate of analyte
concentration,̂x0, may be determined for a mean instrument
response,̄y0, using:

x̂0 = −b +
√

b2 − 4c(a − ȳ0)

2c
(17)

The variance in̂x0, written asσ2
x̂0

, is given byEq. (8), where:

dx̂0 =




∂x̂0

∂a

∂x̂0

∂b

∂x̂0

∂c




(18)

Also,

∂x̂0

∂ȳ0
= 1√

b2 − 4c(a − ȳ0)
, (19)

∂x̂0

∂a
= −1√

b2 − 4c(a − ȳ0)
(20)

∂x̂0

∂b
=

−1 +
(
b/
√

b2 − 4c(a − ȳ0)
)

2c
(21)

∂x̂0

∂c
= −(−b +

√
b2 − 4c(a − ȳ0))

2c2

− (a − ȳ0)

c
√

b2 − 4c(a − ȳ0)
(22)

2.3. Fit of a non-linear equation to data

The relationship betweenx andy is assumed to be of the
form,

y = a + bxm (23)

AsEq. (23)is non-linear in the parameters to be estimated,
a, b and m cannot be found by the method of linear least
squares. Instead, non-linear least squares is used to minimise
SSR given byEq. (2) [10], where

ŷi = a + bxm
i (24)

In this situation, the covariance matrix,V, is given by,

V = σ2(DTD)−1 (25)

whereσ2 is given byEq. (16), and

D =




∂y1

∂a

∂y1

∂b

∂y1

∂m

∂y2

∂a

∂y2

∂b

∂y2

∂m

∂yi

∂a

∂yi

∂b

∂yi

∂m

∂yn

∂a

∂yn

∂b

∂yn

∂m




(26)

The partial derivatives inEq. (26)are evaluated on comple-
tion of fitting by non-linear least squares.

An estimate of the analyte concentration,x̂0, may be es-
tablished for a mean instrument response,ȳ0, using,

x̂0 =
(

ȳ0 − a

b

)1/m

(27)

The variance in̂x0, σ2
x̂0

, is given byEq. (8), where

dx̂0 =




∂x̂0

∂a

∂x̂0

∂b

∂x̂0

∂m




(28)

Partially differentiatingEq. (27)with respect tōy0, a, b and
m in turn gives,

∂x̂0

∂ȳ0
= 1

bm

(
ȳ0 − a

b

)(1−m)/m

(29)

∂x̂0

∂a
= − 1

bm

(
ȳ0 − a

b

)(1−m)/m

(30)

∂x̂0

∂b
= − 1

bm

(
ȳ0 − a

b

)(1/m)

(31)

∂x̂0

∂m
= − 1

m2

(
ȳ0 − a

b

)(1/m)

ln

(
ȳ0 − a

b

)
(32)
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2.4. Goodness of fit statistics

As both Eqs. (13) and (23)contain three adjustable pa-
rameters andEq. (1)only two, the SSR obtained when op-
timum values are found fora, b andc in Eq. (13)and fora,
b andm in Eq. (23), are less than the SSR whenEq. (1) is
fitted to the same data.

There are several statistical methods that can be used to
compare the fit ofEqs. (1), (13) and (23)to data[11]. In
this work we report statistics which are able to compensate
for the number of adjustable parameters in an equation
fitted to data.

2.4.1. Akaikes information criterion (AIC) and adjusted
coefficient of multiple determination

An effective way of comparing two (or more) equations
fitted to data where the equations have different numbers of
parameters is to use the Akaikes information criterion[12].
This criterion takes into account the SSR, but also includes
a term proportional to the number of parameters used. AIC
may be written

AIC = n ln SSR+ 2M (33)

where n is the number of data andM is the number of
parameters in the equation.

If the addition of another parameter in an equation reduces
SSR, then the first term on the right hand side ofEq. (33)is
reduced. However, the second term on the right hand side of
the equation increases by two for every additional parameter
used. A modest decrease in SSR which occurs when an
extra term is introduced into an equation may be more than
offset by the increase in AIC by using another parameter. If
two or more equations are fitted to data, then the equation
producing thesmallestvalue for AIC is preferred.

Another useful measure of goodness of fit when each
equation has a different number of adjustable parameters
is the adjusted coefficient of multiple determination,R2

ADJ,
given by[13],

R2
ADJ = (n − 1)R2 − (M − 1)

n − M
(34)

whereR2 is the coefficient of multiple determination given
by:

R2 = 1 −
∑

(yi − ŷi)
2∑

(ȳ − ŷi)2
(35)

and

ȳ =
∑ yi

n
(36)

OnceR2
ADJ is calculated for each equation fitted to data,

the equation is preferred that has the larger value ofR2
ADJ.

2.4.2. Comparing equations fitted to data using analysis of
variance (ANOVA)

A routine statistical test which offers evidence regarding
the quality of the fit of an equation to experimental data is a

‘goodness of fit’ ANOVA[14]. As an example, in the case of
Eq. (1), the ANOVA is able to establish whether the slope,
b, is important to the fit. This ANOVA may be adapted to
allow for the comparison of two equations fitted to data,
for exampleEqs. (1) and (13). The mean values of SSR for
each equation fitted to data are used as a basis for anF-test
which indicates whether the equation with more parameters
provides a significantly improved fit.

2.4.3. Lack of fit ANOVA
When repeat measurements are made at a particular value

of x, scatter will be observed in they values. The scatter over
all the measuredx values can be expressed as the sum of
squares of the pure error (SSPE)[15]. An equivalent measure
of the scatter based on an equation fitted to data is obtained
from SSR, as given byEq. (2). A lack of fit sum of squares
(SSLOF) can be formed which is given by:

SSLOF= SSR− SSPE (37)

If an equation is a good fit to data, it is expected that
SSLOF will be small. Whether SSR and SSPE differ signif-
icantly (suggesting an inappropriate equation has been fitted
to data) is tested formally through the test statisticFLOF,
where:

FLOF = SSLOF/d.f .LOF

SSPE/d.f .PE
(38)

d.f.LOF and d.f.PE are the degrees of freedom associated with
the SSLOF and SSPE, respectively.

3. Experimental

3.1. Chemicals and reagents

All reagents used were of analytical grade; mobile phase
solvents were of HPLC grade. All standard solutions were
filtered through 0.45�m Millex-HV filter discs (Millipore)
prior to injection on the HPLC system.

3.1.1. Pseudoephedrine and ibuprofen
Pseudoephedrine and ibuprofen were obtained from Pfiz-

ers, Caringbah, Sydney, Australia. The reference standard
solutions were prepared with an extraction solvent con-
taining solvent A (see below)—acetonitrile (50:50) (Rhone
Poulenc). Three combined reference standard solutions
were accurately prepared to contain the following approx-
imate concentrations: 0.036–0.044 mg/ml of ibuprofen,
0.054–0.066 mg/ml of pseudoephedrine· HCl.

3.1.2. Genisten and biochanin
Genisten and biochanin A, were purchased from Sigma

(St. Louis, MO, USA). Acetonitrile (HPLC grade) and acetic
acid were purchased from Rhone Poulenc. Millipore water
was used for all mobile phases.
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3.1.3. Sodium nitrate
Calibration solutions for sodium nitrate from Sigma were

prepared from 1 to 25 mg/l using Milli-Q water (Millipore).

3.2. Instrumentation

3.2.1. Pseudoephedrine and ibuprofen
The aqueous mobile phase was 8.25 mM octanesulphonic

acid, 0.1% glacial acetic acid at pH 3.70 (solvent A). The
mobile phase was prepared by weighing 1.8 g of octane sul-
phonic acid (Biolab Scientific, Clayton, Australia), into a
1 l volumetric flask and dissolve in approximately 500 ml of
Milli-Q water. 1 ml of glacial acetic acid was then added,
and diluted to volume with Milli-Q water. The pH was
adjusted to pH 3.70 ± 0.05 with 2 M sodium hydroxide
solution (AnalaR, grade, BDH, Merck, Australia) and fil-
tered through a 0.45�m nylon membrane filter (47 mm,
Activon).

Acetonitrile (Mallinckrodt, ChromAR HPLC grade) was
used as the organic phase. The HPLC used was the Waters
Alliance 2690 Separations Module with 996 photo diode ar-
ray detection, controlled via Millenium 3.2 software (Waters
Australia, Rydalmere, Australia). Twenty microlitre of sam-
ple and standard solutions were, respectively injected onto
a C8 bonded reversed-phase HPLC column (Waters Sym-
metry C8, 5�m, 150 mm× 3.9 mm with guard column).
The column temperature was held at 40± 2 ◦C. The actives
were separated using ion-pair chromatography and gradient
elution of the aqueous-acetonitrile mobile phase. The gradi-
ent used was linear in several steps (seeTable 1for gradi-
ent mobile phase composition). The optimum flow rate was
1.0 ml/min.

3.2.2. Genisten and biochanin
The HPLC analysis was carried out on a Waters liq-

uid chromatograph with an auto sampler model 717 plus
and a model 600 controller pump connected to a photo
diode array detector model 996 (Waters Australia). The col-
umn used was a Waters Nova-Pak C18 (150 mm× 3.9 mm
i.d.; 4�m) reversed-phase (Waters, Milford, MA, USA).
The optimised mobile phase was 33% acetonitrile (A) and
67% water–acetic acid (99:1, v/v) (B) at a flow rate of
0.80 ml/min. The injection volume was 5�l. The wavelength
ranged from 200 to 400 nm throughout the chromatogram
and each peak was plotted using the wavelength that pro-

Table 1
The gradient conditions for HPLC assay of ibuprofen and pseudoephedrine

Time (min) % Mobile phase A
(aqueous)

% Mobile Phase B
(organic)

0.00 75 25
7.00 30 70

10.00 30 70
12.00 90 10
15.00 90 10
17.00 75 25

vided a maximum response. The maximum absorption for
genisten and biochanin A was 259.2 nm.

3.2.3. Sodium nitrate
The HPLC analysis was carried out on a Waters liquid

chromatograph with an auto sampler model 717 plus and a
model 600 controller pump connected to a Waters 430 con-
ductivity detector with thermostated five-electrode flow cell
(Waters Australia). The column used was a 50 mm×5.6 mm
Waters Anion 10�m diameter porous polymethylmethacry-
late polymer with quaternary ammonium functional groups,
exchange capacity 32�eq./g (Waters). The column temper-
ature was 40◦C, 20�l of each solution was eluted at a
flow rate of 0.8 ml/min using a mobile phase of 1.3 mM
borate–1.3 mM gluconate aqueous buffer, 0.5% glycerin, 2%
n-butanol and 12.5% acetonitrile.

4. Results and discussion

Ibuprofen, genisten, biochanin, pseudoephedrine and
sodium nitrate calibration data shown inTable 2 were
gathered in studies of linearity in HPLC. For illustrative
purposes, the ibuprofen data are analysed in detail. Sum-
mary information concerning the other analytes is provided
in Section 4.3.

Eqs. (1), (13) and (23)were fitted to data inTable 2using
the Excel spreadsheet package by Microsoft. Excel’s Re-
gression tool[16] was used to fitEqs. (1) and (13)to the data
in Table 2. This tool returns useful information including
parameters estimates, their standard errors, SSR, adjusted
coefficient of multiple determination and ANOVA. The de-
termination of the covariance matrix,V, given by Eq. (5)
was realised using Excel’s built in matrix functions. Fitting
by non-linear least squares (which is an iterative process
and cannot be done using the Regression tool) was accom-
plished with the assistance of the Solver utility in Excel[17].
Solver is an optimisation tool which may be applied to least
squares problems[18]. An Excel worksheet may be con-
structed which calculates SSR as given byEq. (2). Solver is
able to iteratively alter values of the parameters appearing in
the equation to be fitted to data until SSR is minimised[19].
The standard errors in parameter estimates may be obtained
with the assistance of the matrix functions in Excel[20].

Successful non-linear least squares fitting requires start-
ing values be chosen for best estimates of parameters. Fitting
equations to data by non-linear least squares can be prob-
lematical, as poor starting values or noisy data can cause the
optimisation algorithm to become trapped in a local min-
imum in SSR. Parameter estimates obtained when a local
minimum is located are not optimum and should be dis-
carded. The identification of the global, rather than a local,
minimum is facilitated by the use of good starting values
for parameters estimates inEq. (23). The similarity between
Eqs. (1) and (23)is such thata andb as determined by linear
least squares whenEq. (1)is fitted are conveniently adopted
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Table 2
Calibration data for ibuprofen, genisten, biochanin, pseudoephedrine and sodium nitrate

Ibuprofen Genisten Biochanin Pseudoephedrine Sodium nitrate

Concentration, (x)
(mg per tablet)

Area, (y)
(arbitrary units)

Concentration,
(x) (mg/100 ml)

Area, (y)
(arbitrary units)

Concentration,
(x) (mg/100 ml)

Area, (y)
(arbitrary units)

Concentration, (x)
(mg per tablet)

Area, (y)
(arbitrary units)

Concentration,
(x) (mg/l)

Area, (y)
(arbitrary units)

103.9 265 053 0.159 0.155598 0.158 0.121342 61.4 28 653 1.006 8 293
103.9 261 357 0.159 0.15508 0.158 0.121109 61.4 29 061 1.006 8 103
139.3 345 915 0.318 0.464125 0.315 0.40355 85.3 39 904 2.013 17 864
139.3 345 669 0.318 0.471655 0.315 0.415226 85.3 39 614 2.013 17 424
180.1 445 684 0.635 2.02122 0.631 1.839583 107.7 50 418 5.032 42 300
180.1 445 753 0.635 2.028043 0.631 1.835114 107.7 50 052 5.032 43 783
200.3 494 700 1.27 4.17856 1.261 3.840554 120.3 56 255 7.548 65 198
200.3 493 846 1.27 4.204061 1.261 3.846146 120.3 56 098 7.548 66 525
219.9 540 221 2.54 9.132732 2.522 8.523561 132.4 61 233 10.06 90 158
219.9 539 610 2.54 9.133685 2.522 8.539992 132.4 61 462 10.06 90 976
278.1 683 881 5.08 17.748132 5.045 16.80701 150.0 69 656 15.10 135 869
278.1 683 991 5.08 17.701031 5.045 16.6986 150.0 69 744 15.10 137 498
305.7 755 890 10.16 35.217533 10.09 34.06871 181.5 85 194 25.16 228 223
305.7 754 901 10.16 35.183699 10.09 33.91678 181.5 85 241 25.16 233 405
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Table 3
Parameter estimates and statistics for ibuprofen data inTable 2

Equation fitted to data

y = a + bx y = a + bx + cx2 y = a + bxm

Parameter estimates a = 7186,b = 2437 a = 24477,b = 2250,c = 0.4505 a = 37523,b = 1546,m = 1.071
Standard errors in estimates σa = 2090,σb = 9.744 σa = 3768,σb = 38.82,σc = 0.09278 σa = 6289,σb = 150.3,σm = 0.01540
σ 2421 1427 1478
R2 0.999808 0.999939 0.999934
R2

ADJ 0.999792 0.999928 0.999923
SSR 7.034× 107 2.238× 107 2.402× 107

AIC 257.0 242.9 243.9

as starting values fora andb whenEq. (23)is fitted to the
same data. As the calibration data considered here has slight
curvature, a starting value ofm = 1 is adequate.

4.1. Goodness of fit statistics

Table 3contains parameter estimates, standard errors and
other statistics that were returned whenEqs. (1), (13) and
(23) were fitted to the ibuprofen data inTable 2. Statistical
t-tests carried out on the parameter estimates inTable 3
indicate that all estimates are significant at theα = 0.05
level of significance.

Two measures of goodness of fit favoured in this paper,
namely AIC andR2

ADJ confirm that there is an improvement
in the fit by usingEqs. (13) and (23)rather thanEq. (1).
This finding is supported by other statistical measures of
goodness of fit.

Table 4shows the output of an ANOVA used to compare
of the fit of Eqs. (13) and (23)to that provided byEq. (1).
As judged by these, bothEqs. (13) and (23)provided a
significantly better fit (P < 0.001) to the ibuprofen data than
Eq. (1).

Table 5shows the lack of fit ANOVA forEqs. (1), (13)
and (23)fitted to the ibuprofen data inTable 2. Thep value
for the lack of fit ANOVA indicates that the SSR and SSPE

Table 4
Comparison of fitting equations to ibuprofen data inTable 2using ANOVA

d.f. SS MS F P value

Residual forEq. (1) 12 70 363 425
Gain from Eq. (13) 1 47 978 882 47 978 882 23.58 0.00051
Residual forEq. (13) 11 22 384 542 2 034 958
Gain from Eq. (23) 1 46 341 252 46 341 252 21.22 0.00076
Residual forEq. (23) 11 24 022 172 2 183 834

Table 5
Lack of fit (LOF) ANOVA for equations fitted to ibuprofen data inTable 2

d.f. SS MS F P value

LOF for Eq. (1) 5 62 454 149 12 490 830 11.05 0.00322
LOF for Eq. (13) 4 14 475 267 3 618 817 3.203 0.08557
LOF for Eq. (23) 4 16 112 897 4 028 224 3.565 0.06856
Pure error 7 7 909 276 1 129 897

differ significantly forEq. (1)fitted to data (P < 0.01), sug-
gesting that the fit is not good. By contrast, theF-test for
bothEqs. (13) and (23)fitted to data indicate no strong sta-
tistical evidence for concluding that either fit is unsatisfac-
tory (P > 0.05).

4.2. Estimated analyte concentrations

The purpose of a calibration equation is to estimate ana-
lyte concentration, given instrument response.Table 6shows
the estimated concentrations,x̂0, of ibuprofen for the mea-
sured responses,ȳ0, determined usingEqs. (7), (17) and (27).
As the analyte concentrations,x0, used in the calibration are
assumed to have negligible error, the absolute error,(x0−x̂0)

and percentage error, given by((x0 − x̂0)/x0)100%, may be
determined and are included inTable 6. The standard errors
in the estimates of the concentrations,σx̂0, were calculated
usingEq. (8) for each equation fitted to data. Inspection of
Table 6indicates that the percentage errors are quite small
for Eq. (1)fitted to data, with only one value exceeding 1%.
On average, the percentage errors in estimates of analyte
concentration are smaller forEqs. (13) and (23)compared to
Eq. (1). Specifically, whenEqs. (13) and (23)are fitted to the
data inTable 2, the fitting yields absolute percentage errors
which are less on average by 27 and 26%, respectively than
the absolute percentage errors obtained upon fittingEq. (1)
to the same data.

4.2.1. 95% prediction intervals
For fitting usingEq. (1) to be abandoned in favour of

Eqs. (13) or (23)there needs to be a reduction in the pre-
diction interval that is of practical significance, and not just
statistical significance.

Fig. 1shows the 95% prediction intervals forEqs. (1) and
(23) fitted to the ibuprofen data. These are calculated using
the standard errors inTable 6and the critical values of the
t-distribution at the 95% level of confidence. The prediction
interval forEq. (13)has been omitted fromFig. 1due the fact
that it is visually indistinguishable from that obtained when
Eq. (23) is fitted to the data. To emphasise the difference
between the prediction intervals whenEqs. (1) and (23)are
fitted to data, a narrow range ofx = 190–208 mg per tablet
is shown inFig. 1. Fig. 1 indicates that fittingEq. (23) to
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Table 6
Estimated concentrations, errors and standard errors for ibuprofen for calibration equations,y = a + bx, y = a + bx+ cx2 and y = a + bxm fitted to
ibuprofen data inTable 2

x0 Equation fitted to data

y = a + bx y = a + bx+ cx2 y = a + bxm

x̂0 (x0 − x̂0) % error σx̂0 x̂0 (x0 − x̂0) % error σx̂0 x̂0 (x0 − x̂0) % error σx̂0

103.9 105.83 −1.93 −1.85 1.10 104.71 −0.81 −0.78 0.72 104.68 −0.78 −0.75 0.75
103.9 104.31 −0.41 −0.39 1.10 103.14 0.76 0.74 0.72 103.09 0.81 0.78 0.76
139.3 139.01 0.29 0.21 1.06 138.97 0.33 0.23 0.64 139.06 0.24 0.17 0.66
139.3 138.91 0.39 0.28 1.06 138.87 0.43 0.31 0.64 138.96 0.34 0.25 0.66
180.1 179.95 0.15 0.08 1.03 180.64 −0.54 −0.30 0.63 180.67 −0.57 −0.32 0.65
180.1 179.98 0.12 0.07 1.03 180.67 −0.57 −0.32 0.63 180.70 −0.60 −0.33 0.65
200.3 200.07 0.23 0.12 1.03 200.88 −0.58 −0.29 0.63 200.86 −0.56 −0.28 0.65
200.3 199.72 0.58 0.29 1.03 200.53 −0.23 −0.11 0.63 200.51 −0.21 −0.10 0.65
219.9 218.75 1.15 0.52 1.03 219.54 0.36 0.16 0.63 219.47 0.43 0.19 0.64
219.9 218.50 1.40 0.64 1.03 219.29 0.61 0.28 0.63 219.22 0.68 0.31 0.64
278.1 277.71 0.39 0.14 1.07 277.60 0.50 0.18 0.61 277.55 0.55 0.20 0.64
278.1 277.75 0.35 0.13 1.07 277.64 0.46 0.16 0.61 277.59 0.51 0.18 0.64
305.7 307.26 −1.56 −0.51 1.11 306.25 −0.55 −0.18 0.66 306.32 −0.62 −0.20 0.68
305.7 306.85 −1.15 −0.38 1.11 305.86 −0.16 −0.05 0.66 305.93 −0.23 −0.07 0.68

the ibuprofen data inTable 2affords a reduction in the 95%
prediction interval of approximately 35% compared to the
interval determined whenEq. (1) is fitted to the same data.

4.2.2. Plot of residuals
Fig. 2 shows a plot of the difference between the esti-

mated analyte concentration and the true analyte concentra-
tion, expressed as a percentage where estimates were deter-
mined following the fittingEqs. (1), (13) and (23)fitted to
data inTable 2.

Examination ofFig. 2 indicates that the percentage errors
in the estimate of the analyte concentration obtained after
fitting Eq. (1) show a trend of positive values to negative
values back to positive values for ibuprofen concentrations
between 103.9 and 305.7 mg per tablet. Such a characteris-
tic trend is indicative of a model violation[20]. That is, the
equation fitted is inadequate to properly describe the rela-
tionship between the estimated concentration of ibuprofen
and the true concentration. A trend in the percentage residu-
als inFig. 2 obtained after fittingEqs. (13) and (23)to data
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Fig. 1. Ninety-five percent prediction intervals forEqs. (1) and (23)fitted
to ibuprofen data inTable 2.

is less obvious than whenEq. (1) is fitted to the same data,
though there are too few calibration data to be able to draw
the conclusion that there is no model violation.

4.2.3. Predicted concentrations using replicate
measurements

As a means of assessing the predictive capabilities
Eqs. (1), (13) and (23), six replicate measurements of re-
sponse were made at a known concentration of ibuprofen
of 200.3 mg per tablet. The replicate values were not used
in the least squares fitting ofEqs. (1), (13) and (23)to data.
Table 7shows the predicted values based on each equation
fitted to the data.

In order to test formally whether the mean value obtained
for x̂0 from the replicate measurements is significantly dif-
ferent from the known value of 200.3 mg per tablet, thet-test
statistic is calculated using:

t =
( ¯̂x0 − x0

σ ¯̂x0

)
(39)
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Fig. 2. Plot of residuals in the concentration values for the assay of
ibuprofen.
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Table 7
Estimated concentrations from six replicate measurements based onEqs. (1), (13) and (23)fitted to ibuprofen data inTable 2

Equation fitted to data Area, y

y = a + bx, x̂0 y = a + bx+ cx2, x̂0 y = a + bxm, x̂0

198.926 199.734 199.712 491 914
198.469 199.276 199.255 490 800
199.495 200.304 200.281 493 299
199.797 200.607 200.583 494 036
198.699 199.506 199.485 491 360
199.048 199.856 199.834 492 210

Mean, ¯̂x0 199.072 199.880 199.858

σ ¯̂x0
0.20240 0.20292 0.20242

t −6.066 −2.068 −2.182

P 0.0018 0.0935 0.0811

The known ibuprofen concentration is 200.3 mg per tablet.

where ¯̂x0 is the mean of estimated concentrations,σ ¯̂x0
is the

standard error in the mean andx0 = 200.3 mg per tablet.
Table 7shows theP value for each equation fitted to the
ibuprofen data. Examination ofTable 7 indicates that the
mean of estimated concentrations based onEq. (1)fitted to
data is statistically different from the nominal concentra-
tion of 200.3 mg per tablet (P < 0.01) indicating a bias in
predicted concentrations. By contrast, the means of the esti-
mated concentrations based on fittingEqs. (13) and (23)to
the same data reveals no significant difference between the
mean of the estimated concentration and the nominal con-
centration (P > 0.05).

4.3. Fitting equations to other calibration data

In order to indicate which of the equations considered here
provided the best fit to data as judged by the goodness of fit
criteria adopted in this work, the analysis was extended to
HPLC calibration data gathered from pharmaceutical, health

Table 8
Comparison of fit of calibration equations for several analytes

Analyte Equation c σc |tc| pc m σm |tm| pm R2 R2
ADJ AIC �PI (%)

Ibuprofen a + bx – – – – – – – – 0.999808 0.999797 257 –
a + bx + cx2 0.4505 0.0928 4.86 0.0005 – – – – 0.999939 0.999928 243−39
a + bxm – – – – 1.0708 0.0154 4.60 0.0008 0.999934 0.999923 244−37

Pseudoephedrinea + bx – – – – – – – – 0.999663 0.999635 202 –
a + bx + cx2 0.1532 0.0461 3.33 0.0067 – – – – 0.999832 0.999802 195−24
a + bxm – – – – 1.0693 0.0240 2.89 0.0147 0.999817 0.999784 196−20

Genisten a + bx – – – – – – – – 0.999523 0.999483 3.05 –
a + bx + cx2 −0.02195 0.00553 3.97 0.0022 – – – – 0.999804 0.999768−7.38 −32
a + bxm – – – – 0.9525 0.0096 4.95 0.0004 0.999848 0.999821−11.0 −42

Biochanin a + bx – – – – – – – – 0.999780 0.999761 −8.73 –
a + bx + cx2 −0.007074 0.00533 1.32 0.2136 – – – – 0.999810 0.999776−8.80 −0.8
a + bxm – – – – 0.9818 0.0105 1.73 0.1116 0.999826 0.999795−10.1 −6.2

Sodium nitrate a + bx – – – – – – – – 0.999554 0.999517 246 –
a + bx + cx2 13.42 6.79 1.98 0.0732 – – – – 0.999671 0.999611 244 −6.7
a + bxm – – – – 1.032 0.0142 2.25 0.0459 0.999694 0.999638 243 −9.2

and environmental research. More specifically, the analytes
considered were genisten, pseudoephedrine, biochanin and
sodium nitrate. A visual inspection of residuals indicated
no strong evidence of heteroscedascity in the data, therefore
Eqs. (1), (13) and (23)were fitted the data inTable 2using
unweighted least squares.

Table 8shows theR2, R2
ADJ and AIC for the calibration

data. As with the ibuprofen data inTable 2, calibration data
for all the analytes shown inTable 8consisted of two repeat
measures of response at each of seven different concentra-
tions. No effort was made to select calibration concentra-
tions that would minimise the standard errors in the fitted
parameters, though such choices are important in some cir-
cumstances[22]. Table 8indicates thatEqs. (13) and (23)
provide a better fit to data thanEq. (1)as measured byRADJ
and AIC for all calibration data considered in this study. For
three out of the five calibration data sets considered (i.e. for
genisten, biochanin and sodium nitrate) theRADJ and AIC
indicate thatEq. (23)is a superior fit toEq. (13). The final
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column inTable 8shows the mean percentage change in the
prediction interval,�PI, whenEqs. (13) and (23)are fitted
to data, compared to fittingEq. (1) to the same data.

The c parameter estimate inEq. (13)may not be signif-
icant for data exhibiting slight curvature. The significance
of c can be tested formally by calculating the magnitude of
t-test statistic,tc, given by,

|tc| = c

σc

(40)

In order to establish whether the best estimate for them
parameter inEq. (23) is significantly different from unity
(unity corresponds to the linear case given byEq. (1)), the
magnitude of thet-test statistic, |tm| was determined for each
data set where:

|tm| =
∣∣∣∣m − 1

σm

∣∣∣∣ (41)

Examination ofTable 8reveals that theP value for the
t-test statistic,tm, for themparameter estimate for biochanin
is greater than 0.05. Similarly, theP value for the test statis-
tic, tc, for thec parameter estimate for biochanin and sodium
nitrate is greater than 0.05. In these instances thet test statis-
tic offers no strong evidence for favouringEqs. (13) and (23)
overEq. (1).

5. Conclusion

The extent to which slight curvature in calibration data
should be accounted for depends upon the analyst’s require-
ments and desired constraints over such quantities as the pre-
diction interval for estimated analyte concentrations. These
needs are context specific and are not the province of statisti-
cal analysis. Nevertheless, the prevalence of slight curvature
in calibration data means that there is merit in establishing
whether fitting a calibration equation other than the custom-
ary linear equation does indeed provide improved statistics.

The equations considered in this study that are able to
account for curvature in data (Eqs. (13) and (23)) provided
a better fit to data sourced from a diverse range of HPLC
calibrations than the conventional linear equation. This
conclusion is based on consideration of several statistics
including lack of fit ANOVA and the standard errors in the
estimated analyte concentrations. Application of the AIC
andR2

ADJ permitted a fair comparison of the goodness of fit
for all equations. Owing to the ease with which AIC may be
calculated and interpreted, it is advised that it be adopted as
a statistic to assist in deciding whetherEqs. (13) or (23)(or
any other equation, such asy = bxor y = a+bx+cx2+dx3)
offers a worthwhile improvement overEq. (1).

The marginal nature of the difference betweenEqs. (13)
and (23)when fitted to data reported here, indicates that
it is not possible to anticipate which equation should be
favoured. It is recommended that each equation be trialed
when an calibration equation is to be fitted to data exhibiting
slight curvature.

The expense of moving from calibration using a linear
equation to one employing a non-linear equation such as
Eq. (23) includes the extra complexity that is inherent in
non-linear fitting. In particular, in order to establish standard
errors in estimates of analyte concentration, any computer
based package must allow access to the covariance matrix as
given byEqs. (5) and (25). Many packages offering fitting by
linear and non-linear least squares do not provide this access.
The inbuilt facilities of Excel allow for the convenient fitting
of equations and the determination of standards errors in
estimates of analyte concentrations.

Fitting by non-linear least squares can be challenging,
especially when data are noisy or when it is difficult to
establish good starting values for parameters. However, the
similarity betweenEqs. (1) and (23), allied to the inherent
low noise of much chromatographic calibration data, reduces
the probability of the fitting routine becoming trapped in
a local minimum. Nevertheless, once any fitting by least
squares has been completed, it is prudent to view response
residuals (e.g.(yi − ŷi) versusx), as well as the relative size
of the standard errors in parameters estimates, as these give
valuable clues as to the success, or otherwise, of the fitting
procedure[21].

Fitting can be extended to data which exhibit het-
eroscedasticity through the introduction of a weight matrix,
W, so that account can be taken of the variance of response
at each analyte concentration[23]. Fitting an equation with
several adjustable parameters, such asEqs. (13) and (23),
becomes less defensible as the number of calibration data
decreases.

6. Nomenclature

a, b, c, m parameter estimates
AIC akaikes information criterion
d.f. degrees of freedom
M number of parameters in fitted equation
MS mean of sum of squares
R2 coefficient of multiple determination
R2

ADJ adjusted coefficient of multiple
determination

SSLOF lack of fit sum of squares
SSPE sum of squares pure error
SSR sum of squares of residuals
V covariance matrix
W weight matrix
x̂0 estimated analyte concentration
ȳ0 mean instrument response,
�PI mean percentage change in prediction

interval
σ standard deviation of residuals of the

response variable about the fitted line
σa, σb, σc, σm standard errors in parameter estimates
σx̂o

standard error in estimate of analyte
concentration
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